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Most models for multiphase flows in a porous medium are based on a straightforward extension of
Darcy’s law, in which each fluid phase is driven by its own pressure gradient. The pressure difference
between the phases is thought to be an effect of surface tension and is called capillary pressure. Indepen-
dent of Darcy’s law, for liquid imbibition processes in a porous material, diffusion models are sometime
used. In this paper, an ensemble phase averaging technique for continuous multiphase flows is applied to
derive averaged equations and to examine the validity of the commonly used models. Closure for the
averaged equations is quite complicated for general multiphase flows in a porous material. For flows with
a small ratio of the characteristic length of the phase interfaces to the macroscopic length, the closure
relations can be simplified significantly by an approximation with a second order error in this length
ratio. This approximation reveals the information of the length scale separation obscured during an aver-
aging process and leads to an equation system similar to Darcy’s law, but with additional terms. Based on
interactions on phase interfaces, relations among closure quantities are studied.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Flow in porous media has been studied extensively because of
the important applications in many industries, such as petroleum,
chemical and environmental. Most models for flows in a porous
medium are based on Darcy’s law, in which the velocity is propor-
tional to the pressure gradient in the fluid. Darcy’s law was origi-
nally obtained for single phase flows in a porous material. For
cases of two-phase flows, often Darcy’s law is extended by simply
applying the law to each phase separately. The average velocity of
each phase is calculated with the pressure gradient of the phase. As
a consequence of this extension, two pressure fields are introduced
for two-phase flows in a porous medium. The introduction of the
two pressure fields leaves the equation system unclosed. To close
the equation system, Leverett (1941) introduced a concept of cap-
illary pressure and assumed that the pressure difference between
the two phases equals to the capillary pressure representing the ef-
fect of surface tension. In the original definition, the capillary pres-
sure is a function of the wetting phase saturation in a porous
material. Studies (Hillel, 1980; Miller and Noegi, 1985) have found
that the pressure difference exhibits hysteresis. The measured
pressure difference takes different values during imbibition or
drainage processes. To amend the concept of capillary pressure,
Hassanizadeh and Gray (1993) introduced an additional dynamic
ll rights reserved.
capillary pressure, which is proportional to the time rate of change
in the wetting phase saturation.

Independent of the generalized Darcy’s law approach men-
tioned above, in other fields, such as in hydrology and in the study
of drying process in a porous material, the motion of water is mod-
eled directly as a diffusion process with the diffusivity depending
on water saturation (Pachepsky et al., 2003; Lockington and Par-
lange, 2003), independent of the water pressure. The starting point
of this approach is based on the work of Washburn (1921), in
which the depth of liquid penetration in a capillary tube is found
proportional to the square root of time, similar to the fundamental
solution of a diffusion equation. Researchers who advocate this dif-
fusion approach over the generalized Darcy’s law approach note
that the validity of the generalized Darcy’s law for multiphase
flows has not been rigorously established and may not be a better
assumption than the diffusion model (Hilfer, 2006). Liu et al.
(1995) took this approach further. In their model, the gradient of
the liquid saturation not only drives the viscous motion but also
drives the fluid when inertia effects are not negligible. Diffusion
models are also found to be limited (Hall, 2007), and ‘‘anomalous
diffusions” are observed (Küntz and Lavallée, 2001).

The main objectives of the present paper are to study the aver-
aged equations for multiphase flows in a porous medium and to
examine the conditions under which the direct generalization of
Darcy’s law or the diffusion models can be applied. The starting point
of this work is the ensemble phase averaged equations for multi-
material interactions. The fluids and the solid porous material are
treated as deformable materials. Averaged equations are obtained
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not only for the fluid phases but also for the solid phase. The ensem-
ble averaging method was initially used to study stress systems in
particle suspensions (Batchelor, 1970). Based on the method, the
ensemble phase averaging method is developed to derive averaged
equations for disperse multiphase flows (Zhang and Prosperetti,
1994, 1997). In this method, the average is performed over all possi-
ble flows according to the probability of the flow system. Originally
the method is restricted to systems with finite degrees of freedom.
Recently (Zhang et al., 2007), this method has been extended for sys-
tems with infinite number of degrees of freedom by using abstract
probability theory (Ash, 1972; Drew and Passman, 1999). Averaged
equations derived strictly from the abstract probability theory,
although quite general, are inconvenient for studying interesting
physical interactions at different length and time scales, because
the averages are calculated by averaging over different flow config-
urations. In contrast, in this work the abstract probability theory is
combined with a small interface approximation to capture the ef-
fects of the phase interactions at different length scales. The small
interface approximation is an extension of the small particle approx-
imation (Zhang and Prosperetti, 1994, 1997) for disperse two-phase
flows. With the small interface or the small particle approximation,
closure quantities can be calculated by first integrating over regions
(lines or surfaces) in a flow in the ensemble; and then averaging over
all possible flows with these regions in specified locations. These re-
gional integrals reveal physical length scales implied in the closure
relations. These length scales are intrinsic to the physical system
rather than preset as in a volume averaging method. With the small
interface approximation, the averaged equations can be simplified,
and closure terms can be calculated to study interactions on the
phase interfaces.

These calculations yield useful restrictions on the closure rela-
tions for multiphase flows in a porous medium. Using this ensem-
ble phase averaging method, we have obtained averaged equations
not only for the fluid phases, but also for the solid phase of the por-
ous material. We show that the surface tension force produces a
stress acting on the solid phase causing the solid phase to contract
during a drying process.

The presentation of this work is divided into two parts as
separated papers in this Journal. In Part 1 (Yang et al., 2009),
we illustrate the concept of the ensemble phase averaging meth-
od through a simple example, the bundle-of-tubes model for a
porous material. This paper is Part 2. In this paper we describe
a general theory for multiphase flows in porous material. We
find that both the generalized Darcy’s law and the diffusion
model are correct under very limited conditions. Examples are
given in Part 1, in which the generalized Darcy’s law and the dif-
fusion model are incorrect. If the viscosity of one of the fluid
phases is negligible in a two-phase flow in a porous material,
the dynamic part of the ‘‘capillary pressure” constitutes as a
term in the momentum equation for the other fluid phase; how-
ever, this ‘‘capillary pressure” is not necessarily related to sur-
face tension on the phase interface.
2. Averaged equations

Many averaged equations for flow in a porous medium have
been derived using representative volume elements (RVEs) (Pedras
and de Lemos, 2001; Breugem and Rees, 2006; Nordbotten et al.,
2007, 2008). In this paper, the starting point is the averaged equa-
tions derived by using the ensemble phase averaging technique
(Zhang and Prosperetti, 1994; Zhang et al., 2007).

In the ensemble phase averaging method, we consider an
ensemble of flows and denote a flow belonging to the ensemble
as F. Let Ciðx; t;FÞ be the indicator function of phase i, such that
Ciðx; t;FÞ ¼ 1 if the spatial point x is occupied by phase i in flow
F at time t, and Ciðx; t;FÞ ¼ 0 otherwise. The volume fraction hi

of phase i at this point and time is calculated by averaging the val-
ues of the indicator functions over all possible flows in the
ensemble.

hiðx; tÞ ¼
Z

Ciðx; t;FÞdP; ð1Þ

where P is the probability measure (Ash, 1972; Drew and Passman,
1999) defined on the ensemble of the flows, and

R
ð�ÞdP denotes the

average over all possible flows in the ensemble according to the
probability. The ensemble phase average hqii for a quantity qi per-
taining to phase i is defined as

hqiiðx; tÞ ¼
1
hi

Z
Ciðx; t;FÞqiðx; t;FÞdP: ð2Þ

To focus on interactions on phase interfaces, in the present pa-
per we only consider flows with a constant density for each phase.
With this restriction, we do not need to distinguish the average de-
fined in (2) from the Favre average defined as ~qi ¼ hq0

i qii=hq0
i i,

where q0
i is the material density of phase i. Extension of this work

to compressible flows involves the adoption of the multi-pressure
model developed in the paper by Zhang et al. (2007). For incom-
pressible flows the transport equation for the volume fraction
can be written as

ohi

ot
þr � ðhihuiiÞ ¼ 0; ð3Þ

where huii is the average velocity of phase i.
After setting the average stress hrii of phase i as rAi in Eq. (15) in

the paper of Zhang et al. (2007), the averaged momentum equation
can be written as

o

ot
ðqihuiiÞ þ r � ðqihuiihuiiÞ ¼ hir � hrii þ r � hir

Re
i

� �
þ f i þ qig;

ð4Þ

where qi ¼ hiq0
i is the macroscopic density of phase i;rRe

i is the
stress due to velocity fluctuations, g is the body force per unit mass,
such as gravity, and

f i ¼ �
Z
ðri � hriiÞ � rCi dP; ð5Þ

is the interfacial force. The integrand in (5) is nonzero only on phase
interfaces.

2.1. Surface interactions

To study the effects of phase interactions on interfaces, in this
paper, we make the following three assumptions. First, an inter-
face has negligible thickness so that its mass and inertia can be
neglected. Second, on the edge of an interface, there is neither a
transverse force, the shear force in the direction normal to the
interface, nor a shear force parallel to the edge. The only force
can exist on an edge of an interface is the surface tension force
tangent to the interface and perpendicular to the edge. Third,
continuum descriptions are adequate outside the interface
region. A surface of a phase may be contacted not only by an-
other phase, but also by phase interfaces, as illustrated in
Fig. 1 on a solid surface and in Fig. 2 for more general cases.
The intersection of phase interfaces forms a contact line. The
first assumption implies that the inertia and the mass of a
contact line can also be neglected.

To focus on physics of the multiphase system and to simplify
the mathematical derivations, in the main text of this paper we
limit our discussion to three-phase systems containing two fluid
phases, 1 and 2, and a solid phase s. Extensions to multiphase sys-
tems are discussed in Appendix B, using results from Appendix A.
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For a contact line on the solid interface as shown in Fig. 1, the
balance of surface tension forces in the direction tangent to the so-
lid surface is often written as C2s � C1s � C12 cos b ¼ 0, where
C1s and C2s are surface tension coefficients on solid surface for
both fluids, C12 is the surface tension coefficient on the fluid inter-
face, and b is the contact angle of fluid 1 on the solid surface. As
pointed out by Dussan V (1979), this relation is not sufficient.
The force balance in the direction normal to the solid surface re-
quires the solid material to apply a force on the contact line. There
are many studies (see the review paper by Dussan V, 1979) on the
phase interactions near the contact line on a solid surface. It is not
an intention of this paper to discuss this issue. Rather, we only
need to assume that the mass associated with a contact line is neg-
ligibly small. On the contact line the surface tension force from the
fluid interface can be expressed as C12t12, where t12 is the unit tan-
gent vector of the fluid interface perpendicular to and pointing
away from the contact line (see Fig. 1). Under the assumption of
negligibly small mass of the contact line, this surface tension force
C12t12 must be balanced by a concentrated force from the solid
phase on the contact line. This concentrated force can be a com-
bined contribution from the surface tensions and a force from
the solid. For the purpose of this paper, there is no need to know
their individual contributions or their precise definitions.

Considering the concentrated force C12t12 from the fluid inter-
face applied on the contact line on the solid surface, we can write
the interfacial force defined in (5) for the solid phase as

f s ¼
Z

C12t12dc dPþ Fs1 þ Fs2; ð6Þ

where dc is the d-function that singles out contact lines on the solid
surface, and F ij is the phase interaction force between phases i and j
calculated as

F ijðx; tÞ ¼ �
Z
ðri � hriiÞ � ðrCiÞj dP; ð7Þ

with ðrCiÞj denoting rCi restricted on interfaces between phases i
and j, excluding the contact lines. The integral in (7) excludes flows
in which the point x is on a contact line at time t because those
flows are already accounted for by the first term in (6).

Similarly, we can write the interfacial force defined in (5) for the
fluid phases as

f 1 ¼ F12 þ F1s; f 2 ¼ F21 þ F2s; ð8Þ
where F ij is defined in (7). There is no term similar to the first term
in (6) in (8) for the fluid phases because the fluid phases do not ap-
ply concentrated forces to contact lines, while the solid phase does.

Since a fluid interface has no mass, the force balance of a fluid
interface can be written as

r1 � n1 þ r2 � n2 þ s12 ¼ 0; ð9Þ

where ni ði ¼ 1;2Þ is the inward unit normal on surface of phase i,
and s12 is the interface traction on the interface. The inward unit
normal satisfies rCi ¼ dini, where di is the d-function on surface
of phase i. Without external forces acting on the interface, the inter-
face traction results from surface tension, and can be written as
s12 ¼ C12j12n1 þrtC12, where C12 ¼ C21 is the surface tension coef-
ficient, j12 is the curvature of the interface, andrt ¼ r� n1ðn1 � rÞ
is the gradient operator tangent to the interface. The curvature j12

is defined positive if the interface is convex for phase 1; thus
j21 ¼ �j12. The second term in the expression for s12 is the tangen-
tial component of the surface tension (Landau and Lifshitz, 1987).

The force balance on the solid–fluid interface (away from the
contact line) can be written as

rs � ns þ ri � ni ¼ 0; ði ¼ 1 or 2Þ: ð10Þ

In relation (10) we do not explicitly introduce the surface ten-
sion on the solid surface. The response of the solid phase and its
surfaces is included in the solid stress rs.

Using (9), we find

F12 þ F21 ¼ ðhr1i � hr2iÞ �
Z
ðrC1Þ2 dPþ

Z
s12d12 dP; ð11Þ

where d12 is the d-function d1 restricted on the interface between
fluids 1 and 2 (i.e. ðrC1Þ2 ¼ n1d12). Similarly, using (10), we have

F is þ Fsi ¼ ðhrii � hrsiÞ �
Z
ðrCiÞs dP: ð12Þ

The interface integral
R
ðrCiÞj dP in (11) and (12) represents a

morphology effect on multiphase flows. Although it appears to
be kinematic in the definition, the dynamics of phase interactions
affect phase interfaces, because the shape and normal of the inter-
face are affected by local flow field. For instance, the contact angle,
the normal and the shape of the interface are functions of local
flow direction. The hysteresis of the contact angle also affects the
last term in (11) because s12 is related to the normal of the inter-
face. Since rCi ¼

P
jðrCiÞj and

R
rCi dP ¼ rhi, models for the

interface integral need to satisfy the following relation:
X

j

Z
ðrCiÞj dP ¼ rhi: ð13Þ

By using (6) and (11)–(13) and noting that rðC2Þ1 ¼ �rðC1Þ2,
we can write the interfacial force for the solid phase as

f s ¼ � F1s � F2s þ hrsi � rhs þ hr1i � rh1 þ hr2i � rh2

� ðF12 þ F21Þ þ
Z

s12d12 dPþ
Z

C12dct12 dP: ð14Þ
2.2. Viscous flow in porous solid

We now assume that the fluids are Newtonian with viscosity li

ði ¼ 1;2Þ and ri ¼ �piI þ si, where si is the viscous stress, pi is the
pressure, and I is the identity tensor. We further assume that the
characteristic length, Lf , of a pore cross section is small compared
to the macroscopic length scale L of the problem. The local viscous
stress si can be estimated to be of order liðhuii � husiÞ=Lf for the
fluid of phase i. The flow of fluids in such a porous solid is viscous
flow driven by a pressure gradient. From the balance between the
pressure gradient force, estimated as rpiL

2
f , and the viscous force
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siLf , we can estimate the pressure gradient to be of order
liðhuii � husiÞ=L2

f ; and hence the pressure difference is of order
liðhuii � husiÞL=L2

f . The ratio of the magnitude of the average vis-
cous stress hsii to the pressure difference in average stress hrii is
then of order Lf =L. If this order of error is allowed in the
momentum equations, then the average viscous stress can be ne-
glected in hrii and hrii � �hpiiI. This approximation is used in al-
most all models for flows in porous media. For a single phase
flow in a rigid porous solid, this approximation is of order
L2

f =L2, one order higher than Lf =L for multiphase flows. This dif-
ference is a result of the calculation of the average of the veloc-
ity gradient hruii, because the average viscous stress can be
calculated as hsii ¼ liðhruiiþ hruiiTÞ=2. By taking the spatial
derivative of definition (2) with qi ¼ ui, we find (Zhang et al.,
2007)

hruii ¼
1
hi
rðhihuiiÞ �

1
hi

Z
uiðrCiÞj dP� 1

hi

Z
usðrCiÞs dP; ð15Þ

where we have used the no-slip condition on solid walls in the last
term. The first term in the right-hand side of (15) is of order huii=L.
For a single phase flow in a rigid solid, the second term disappears,
and us ¼ 0 in the third term for rigid solid walls. For a multiphase
flow, however, the second term is of order huii=Lf .

According to the analysis above, in the case of a viscous flow in a
porous medium, the stress difference ri � hrii in (7) linearly de-
pends on the viscosity of the fluid and the relative velocity be-
tween the fluid and the solid. We can model the force F is defined
in (7) as proportional to the velocity difference huii � husi and the
viscosity of the fluid.

F is ¼ hiCisliðhusi � huiiÞ; ð16Þ

where Cis is the viscous drag coefficient. If the information of the
stress distribution at the pore size scale is available, such as in
the bundle-of-tubes mode discussed in Part 1 (Yang et al.,
2009), the force F is can be calculated explicitly; and the viscous
drag coefficient Cis can be determined from its definition (16).
For a single phase flow, 1=Cis is the permeability of the porous
material. For multiphase flows, Cis is a function of the saturation
of the fluid as shown in Part 1 (Yang et al., 2009).

After neglecting inertia terms and using (8), the momentum
equation for the fluid phases (4) becomes

hiCisliðhuii � husiÞ ¼ hir � hrii þ F ij þ qig;
ði ¼ 1;2; j ¼ 1;2; j–iÞ: ð17Þ

Similarly, after neglecting inertia of the solid and using (14),
the momentum equation for the solid phase becomes

h1C1sl1ðhusi � hu1iÞ þ h2C2sl2ðhusi � hu2iÞ
¼ r � ðhshrsiÞ þ hr1i � rh1 þ hr2i � rh2 � ðF12 þ F21Þ

þ
Z

s12d12 dPþ
Z

C12dct12 dPþ qsg: ð18Þ

In Part 1 (Yang et al., 2009) of this work we used the concept
of ensemble phase average to study the bundle-of-tubes model
for multiphase flow. In the following section, we show that the
equations obtained in Part 1 are a special case of the more gen-
eral theory obtained in this paper. We also study the averaged
equation of motion for the solid phase in the model. This exer-
cise illustrates the basic character of phase interaction terms
introduced in this paper, although this model is overly simplistic
for most practical problems. To study practical systems, we need
to employ the small interface approximation which is an exten-
sion of the small particle approximation originally developed for
disperse two-phase flows (Zhang and Prosperetti, 1994, 1997).
Because this approximation requires some mathematical deriva-
tion, we postpone the discussion to Section 4.
3. Bundle-of-tubes model

As described in Part 1 (Yang et al., 2009), we consider a one-
dimensional two-phase flow in a porous material consisting of
uniformly distributed capillary tubes with different diameters.
Suppose the capillary tubes are parallel to each other and in
direction x with length L. Let Pð/Þ be the probability density of
the diameters, /’s, of the capillary tubes, and b be the contact angle
of fluid 1 on the solid wall, measured from the solid wall in contact
with fluid 1 to the interface between fluids 1 and 2 as shown in
Fig. 1. For small tubes, the curvature radius a of the fluid interface
can be calculated as a ¼ /=ð2 cos bÞ. In this example, there is a
reservoir of fluid 1 on the left of the capillary tubes. Initially, the
capillary tubes are filled with fluid 2 and are connected to a reser-
voir of fluid 2 at the right end. At time t ¼ 0, the left ends of the
capillary tubes are brought into contact with the reservoir of fluid
1 causing the invasion of fluid 1 into the capillary tubes initially
filled with fluid 2.

The averaged fluid momentum equations (23) and (24) of Part 1
are special case of (17) with husi ¼ 0. In this example, the capillary
tubes with different diameters are uniformly distributed andR
ðrC1Þs dP ¼ 0, because at a given x the sum of the unit normal

vectors on the solid walls vanishes. Using (13) we haveR
ðrC1Þ2 dP ¼

R
n1d12 dP ¼ rh1. Similarly,

R
ðrC2Þ1 dP ¼ rh2. In

this example as mentioned in Part 1, the diameter / of the tubes
containing an interface located at x at time t, is uniquely deter-
mined by the interface location and the time, / ¼ /ðx; tÞ. The cur-
vature of the interface can be calculated as j12 ¼ �2=a ¼
�4 cos b=/ðx; tÞ. Using this result, and noting constant surface ten-
sion coefficient in the example, we have
Z

s12d12 dP ¼
Z

j12n1d12 dP ¼ �4C12 cos b
/ðx; tÞ rh1; ð19Þ

and (11) becomes

F12 þ F21 ¼ ½hp2i � hp1i � 4C12 cos b=/ðx; tÞ�rh1; ð20Þ

after approximating the stresses by the corresponding pressures.
This is Eq. (27) in Part 1.

In a typical model for multiphase flows in porous solid, the re-
sponse of the solid phase is not studied. To study the solid motion,
we need to calculate

R
C12dct12 dP in the momentum equation (18)

for the solid phase. We again note that the interface location x at
time t uniquely determines the diameter /ðx; tÞ of the tube, and
that each such interface contributes �p/ðx; tÞC12 cos bi to the inte-
gral, therefore
Z

C12dct12 dP ¼ �nð12Þp/C12 cos bi; ð21Þ

where nð12Þðx; tÞ is the number density of the interface at location x
at time t, and i is the unit vector in x-direction. To calculate the
number density nð12Þ we note that the number, nð12ÞDx, of interfaces
per unit cross section perpendicular to the x direction in the vicinity
Dx of x, can be calculated as nAPð/ÞD/, where nA is the number of
tubes per unit cross section area, D/ ¼ /ðxþ Dx; tÞ � /ðx; tÞ, and
Pð/ÞD/ is the probability of finding the suitable tube diameters.
That is

nð12Þðx; tÞ ¼ nAPð/ðx; tÞÞ o/
ox
: ð22Þ

Differentiating Eq. (9) in Part 1 with respect to x, we find

rh1 ¼ �
1
4

nAp/2Pð/Þ o/
ox

i: ð23Þ

Comparing (22) and (23), we find nð12Þðx; tÞi ¼�4=½p/2ðx; tÞ�rh1,
and
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Z
C12dct12 dP ¼ 4C12 cos b

/ðx; tÞ rh1; ð24Þ

after using (21).
In the example of Part 1, only invasion of fluid 1 is considered.

In this case, the contact angle b is a constant. If the flow involves
invasion of fluid 1 in some of the tubes and withdraw of the fluid
in the other tubes, then, because of the contact angle hysteresis,
the forces F12 and F21 may become history dependent.

With relations (11), (19) and (24) we find that the two integrals
in (18) cancel each other in this example, and the momentum
equation becomes

h1C1sl1ðhusi � hu1iÞ þ h2C2sl2ðhusi � hu2iÞ
¼ r � ðhshrsiÞ þ 4C12 cos b=/rh1 þ qsg: ð25Þ

In writing this equation, the cancellation of the two integrals in
(18) is not a coincidence as we shall see in the next section. The
second term on the right-hand side implies that the surface tension
pulls the solid toward to the invading fluid in the direction parallel
to the capillary tube. On the other hand, the surface tension from
the fluid interfaces pulls the solid wall toward the center and tends
to cause contraction of the tube. This mechanism of possible solid
deformation has not been captured in this example. Since the net
force perpendicular to the tubes from the surface tension is zero
in each tube, the only way for this surface tension effect to appear
in the solid momentum equation is through the non-uniformity of
the tube distribution. The non-uniformity of tube distribution is of
order 1/L, where L is the macroscopic length over which significant
change in the tube density occurs. The length scale of the surface
tension force on the contact line is �/, the average diameter of the
tube. Therefore to consider the possible solid deformation caused
by the surface tension, the momentum equation needs to be cor-
rect to first order of the length ratio �/=L. In the example considered
in this section, we have neglected terms of this order because of
the invalidity of Poiseuille flow assumption near the fluid interface
as mentioned in Part 1.

Most models for multiphase flows in a porous material are still
inaccurate to the zero-th order of the length ratio �/=L as shown in
the example in Part 1. The model accurate to first order of this
length ratio has not been studied. Such model is essential to study
the solid deformation caused by the surface tension. When the re-
lated integrals on the phase interfaces and contact lines are calcu-
lated correctly to the first order in the length ratio, the equations
derived in the present paper is accurate to the order of the length
scale ratio; and this averaged equation system provides unique
opportunity to study the first order interface effects on multiphase
flows in a porous solid. This is the main objective of the following
section.

4. Flows with small interfaces

In this section, we study an approach to calculate probability
integrals

R
s12d12 dP on the fluid interfaces and

R
C12dct12 dP on

contact lines based on the physical meanings of the integrals. We
assume that the typical interface size, Lf , is small compared to
the macroscopic length scale, L, of the system. Such systems in-
clude multiphase flows in many porous materials commonly found
in nature and used in industrial applications, but exclude multi-
phase flows in many fabric materials where fluids occupy the re-
gion outside of fibers, such as the flow of paint when a paint
brush is dipped but not submerged into a pan of paint. In this case,
the interfaces between paint and air along the cross section of the
paint brush may extend along the entire brush width.

The probability interface integral
R

s12d12 dP on the fluid inter-
face integrates over all possible flows in the ensemble with the
interfaces touching the point of interest, x, at time t, instead of
integrating over an interface in a fixed flow. To calculate this inte-
gral, we first calculate the contribution from all interfaces with a
specified shape S, and then average over all possible interface
shapes. Let xc be the geometric center of an interface with shape
S that touches point x at time t. For a fixed shape, the interface
location is uniquely determined by its geometric center; therefore
the probability interface integral can be calculated as
Z

s12d12 dP ¼
Z

S
nð12Þ

S ðxc; t; SÞs12 dSðxcÞ
S

; ð26Þ

where nð12Þ
S ðxc; t; SÞ is the number density of the interfaces with

shape S at geometric center xc at time t, and the overline with
superscript S denotes the average over all possible shapes. The inte-
gral integrates over all possible geometric centers of the interfaces
that have shape S and pass point x. For a specified shape S, the value
of nð12Þ

S s12 at x is a function of the interface location represented by
the geometric center xc , and the relative distance r ¼ x� xc . We de-
note this dependency by nð12Þ

S s12

� �
ðr; xcÞ. For a constant surface ten-

sion coefficient C12; s12 is uniquely determined by the relative
position r and the shape S of the interface. There are cases in which
the surface tension coefficient C12 depends on other flow parame-
ters, such as temperature or chemical concentrations. To avoid the
mathematical complications associated with these cases, in this
section, we regard the surface tension coefficient C12 as the value
averaged over these additional parameters.

The distance from the geometric center to a point on the inter-
face is of the order of interface size. Under the small fluid interface
assumption, with xc ¼ x� r, a Taylor expansion in xc in nð12Þ

S s12

� �
gives

nð12Þ
S s12

� �
ðr;xcÞ¼ nð12Þ

S s12

� �
ðr;xÞ�r nð12Þ

S s12

� �
ðr;xÞ

h i
�rþO L2

f =L2
� �

:

ð27Þ

The right-hand side of this relation is evaluated at the interface
with the geometric center at x instead of xc. By changing the inte-
gration variable from xc to r and substituting (27) into (26), we
haveZ

s12d12 dP ¼ Fð12Þ
s þr � T ð12Þ

s ; ð28Þ

where

Fð12Þ
s ðx; tÞ ¼

Z
S

nð12Þ
S s12

� �
ðr; xÞdSðrÞ

S

; ð29Þ

and

T ð12Þ
s ðx; tÞ ¼ �

Z
S

nð12Þ
S s12

� �
ðr; xÞ � r dSðrÞ

S

þ O L2
f Fð12Þ

s

.
L

� �
: ð30Þ

The term O L2
f Fð12Þ

s

.
L

� �
in (30) accounts for the error in the Tay-

lor expansion. The number density nð12Þ
S of interfaces with fixed

shape S used in this derivation only exists conceptually and cannot
be measured practically because of the number of parameters
needed to describe a shape. To unequivocally study this system,
we need a tool to study systems with infinite degrees of freedom.
This tool is described in Appendix A. To avoid this difficulty, we
now introduce the number density, nð12Þ, of interfaces regardless
of the shapes. This number density can be measured or calculated,
at least in principle, in a practical system. Conceptually, this
number density can be obtained by summing nð12Þ

S over all possible

shapes, nð12Þðx; tÞ ¼
P

Snð12Þ
S ðx; t; SÞ. With this number density of

interfaces, for a shape dependent interface quantity qðx; t; SÞ, we
can define its average per interface as �qðx; tÞ ¼

nð12Þ
S qðx; t; SÞ

S
=nð12Þðx; tÞ. In this way, (29) and (30) can be written as
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Fð12Þ
s ðx; tÞ ¼ nð12Þðx; tÞ

Z
S

s12 dS; ð31Þ

and

T ð12Þ
s ðx; tÞ ¼ �nð12Þðx; tÞ

Z
S

s12 � r dSþ O L2
f Fð12Þ

s

.
L

� �
: ð32Þ

The overlines in (31) and (32) denote the average values of the
integrals per interface.

Similarly, for the probability integral on the contact line we
haveZ

C12dct12 dP ¼ Fð12Þ
‘ þr � T ð12Þ

‘ ; ð33Þ

where Fð12Þ
‘ and T ð12Þ

‘ are the force and the stress on the solid phase
resulting from the surface tension force applied by fluid interfaces.
They can be calculated as

Fð12Þ
‘ ðx; tÞ ¼ nð12Þðx; tÞ

Z
oS

C12t12 dC; ð34Þ

and

T ð12Þ
‘ ðx; tÞ ¼ �nð12Þðx; tÞ

Z
oS

C12t12 � r dC þ O L2
f Fð12Þ

‘

.
L

� �
; ð35Þ

where oS is the contact line on the solid surface, and r is the dis-
tance vector from the geometric center x of the fluid interface S to
the line element dC on the contact line.

This method of deriving (28) and (33) illustrates the physics of
length scale separation in multiphase flows in a porous material.
These derivations can be made mathematically rigorous as in
Appendix A. Relations (28), (31) and (32) can be obtained by set-
ting f ¼ s12 in (A.2) and using (A.8), (A.23) and (A.24). Relations
(33)–(35) can be obtained by setting f ¼ C12t12 in (A.17) and using
(A.18), (A.25) and (A.26).

Relations (28) and (33) are extensions of the small particle
approximation used by Zhang and Prosperetti (1994, 1997) for
disperse two-phase flows. With this small interface approxima-
tion, the closure quantities Fð12Þ

‘ ; T ð12Þ
‘ ; Fð12Þ

s and T ð12Þ
s are calcu-

lated by integrating over a region (a surface or a curve), in a
flow in the ensemble first, and then averaging over all possible
flows that have these regions in the specified location. The inte-
gration of these regions implies length scales of the flows.
These length scales are intrinsic to the physical system, and
are not preset as in volume averaging methods. The use of
the small interface approximation recovers the information of
length scales obscured in an averaging process, and leads to
the identification of the stresses T ð12Þ

‘ and T ð12Þ
s in the system.

Without a tool similar to the small interface approximation or
small particle approximation, volume averaging methods have
been shown to miss many interesting terms for disperse two-
phase flows (Marchioro et al., 2001a,b; Prosperetti, 2004). For
multiphase flows in a porous medium, the stresses
T ð12Þ
‘ and T ð12Þ

s are important in the mixture momentum equa-
tion, as we now show.

By summing the interface force f i; ði ¼ 1;2; sÞ, as calculated in
(8) and (14), over all the phases in the system and using (28) and
(33), we find
X

i

f i ¼
X

i

hriirhi þ Fð12Þ
s þ Fð12Þ

‘ þr � T ð12Þ
s þ T ð12Þ

‘

� �
: ð36Þ

Since the thickness of the phase interface is negligible, and on
the edge of an interface there is neither a shear force in the direc-
tion normal to the interface, nor a force parallel to the edge, with-
out an external force, the force balance on the interface leads to
(Brackbill et al., 1992),
Z
S

sij dSþ
I

oS
Cijtij dC ¼ 0: ð37Þ

In systems with two fluid phases and a solid phase, an inter-
face between fluids is either closed, such as a bubble, or
bounded by a contact line on the solid surface. If the interface
is closed, then oS is an empty set and according to (37) the sur-
face integral is zero. This is in confirmation with the conclusion
that surface tension does not produce net forces in bubbles
(Prosperetti and Jones, 1984; Hesla et al., 1993). Using (31),
(34) and (37), we find Fð12Þ

s þ Fð12Þ
‘ ¼ 0 in (36); and the mixture

momentum equation becomes

o

ot
ðqMhuMiÞ þ r � ðqMhuMihuMiÞ

¼ r � rM þr � T ð12Þ
s þ T ð12Þ

‘

� �

þr �
X

i

hir
Re
i

� �
� qiðhuii � huMiÞðhuii � huMiÞ

� �
þ qMg;

ð38Þ

after summing momentum equation (4) over all phases, where
qM ¼

P
iqi is the mixture density, rM ¼

P
ihihrii is the mixture

stress, and huiM ¼
P

iqihuii=qM , is the mixture velocity. This con-
firms the general conclusion that the phase interaction forces in a
multiphase system do not usually cancel but produce stresses in
the mixture equation and the mixture equation can be written in
a conservative form (Zhang et al., 2006), except for the body force
term.

Since Fð12Þ
s þ Fð12Þ

‘ ¼ 0, by using (28) and (33), the two integrals
in (18) do not cancel each other exactly, but sum to

r � T ð12Þ
s þ T ð12Þ

‘

� �
. By comparing (31) with (32) we find that the ra-

tio between the magnitudes of r � T ð12Þ
s and Fð12Þ

s is OðLf =LÞ. The

same is true between r � T ð12Þ
‘ and Fð12Þ

‘ . Therefore the stresses
are not present in the momentum equations with the zero-th order
of accuracy in Lf =L. This explains the absence of these stresses in
(25) in the previous section.

For the bundle-of-tubes model, we can calculate the two stres-
ses directly using (32) and (35) to find

T ð12Þ
s ¼ pnð12ÞC12/

2ðx; tÞ
12ð1þ sin bÞ diag ð1� sin bÞ2;2½2� sin bð1þ sin bÞ�;

n

2½2� sin bð1þ sin bÞ�
o
; ð39Þ

T ð12Þ
‘ ¼ pnð12ÞC12/

2ðx; tÞ
4

diag 1� sin b; sin b; sin bf g; ð40Þ

where diag{� � �} denotes the diagonal tensor. For the example in
the previous section, although it is not consistent to include
these stresses in the momentum equations for the individual
phases because of omission of terms of order Lf =L in the calcu-
lation of the average pressure as mentioned before, these stres-
ses can be used in (38). Since both stresses are tensile stresses,
Eq. (38) implies that a compressive mixture stress is needed to
balance these stresses if the porous material has stress free
boundaries. In other words, these stresses cause contraction of
the porous material with stress-free boundaries, such as a drying
sponge on a table.

5. Conclusions

Using ensemble phase averaging techniques for continuous
multiphase flows, averaged momentum equations for multiphase
flow in a porous solid are studied. After neglecting inertia for vis-
cous multiphase flows, the averaged momentum equations for flu-
ids are found to be in a form similar to Darcy’s law but with
additional terms representing the effect of phase interactions on



Fig. 3. Illustration of the relations in a relative configuration. For a specified point x
and a phase interface Sa , there is a surface S0a formed by all reference points ðx0RsÞ
such that x is on surface Sa in flow F ¼ fxR;R; tg when xR is on S0a . Let xðaÞRc be the
geometric center of surface S0a . For the flow with the reference point xR located at
the geometric center xðaÞRc of S0a , location x is the geometric center of the interface Sa

in the flow.
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interfaces. These additional terms need to be modeled. In this
study, the momentum equation for the solid phase is also derived.

Although for practical porous materials, much more work is
needed on the closure relations for the averaged equations ob-
tained in the present paper, using the bundle-of-tubes model
for a porous material, the additional force terms identified in
this work are shown to be important corrections needed for
the models based on the straightforward extensions of Darcy’s
law, and for the models based on diffusions of fluids. In the
momentum equation of the mixture, the stresses identified in
this paper are shown to cause solid deformations during the
drying and imbibition of fluids. However, the importance of
the stresses has not been demonstrated in the momentum
equations for individual phases because of the lack of needed
accuracy in the approximate solution for the bundle-of-tubes
model.

In this ensemble phase averaging method, with the small
interface approximation, the closure relations are expressed as
probability integrals of interactions on phase interfaces. These
expressions can be used to unambiguously calculate the closure
quantities needed in the ensemble phase averaged equations,
when the information about phase interactions at the pore size
scale is available. This method can potentially be used to provide
new insight into how to construct closure relations using large
amounts of data obtained from direct numerical simulations on
more complicated pore morphologies.
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Appendix A. Interface integrals

For a location x, the integrals in (14) are calculated by integrat-
ing over all the flows that have an interface touching point x, in-
stead of integrating over an interface in a flow. To unequivocally
calculate this type of integrals we need to study the probability
of the flows.

We introduce a probability P defined on a collection of sub-
sets in the ensemble of the flows (Ash, 1972). A subset in the
collection is called an event in probability theory. The probabil-
ity is a set function that maps an event (a subset in the collec-
tion) to a real number between 0 and 1. We categorize flow
systems into relative configuration classes. In each such class
R, the flows differ by only a rigid translation. For any given
time, each flow F in the ensemble belongs to one and only
one such class. In this way a flow can be uniquely described
by specifying the class R that the flow belongs to and the posi-
tion xR of a reference point in the configuration ðF ¼ fxR;R; tgÞ.
The probability of finding a system in the vicinity of a flow
F ¼ fxR;R; tg can be calculated as dPðFÞ ¼ PRðxR; tjRÞ
d3xR dPðR; tÞ, where dPðR; tÞ is the probability of finding a flow
that has a relative configuration in the vicinity of R, and
PRðxR; tjRÞ is the probability density function of finding the ref-
erence point of the configuration F in the vicinity of xR. This
relation among the probability PðFÞ, the probability density
PRðxR; tjRÞ, and the probability PðR; tÞ is a statement of Fubini’s
theorem (Billingsley, 1995). For this relation to hold the related
probability spaces and the event sets are required to satisfy cer-
tain mathematical properties, which are met by most physical
systems. For details regarding these requirements, readers are
referred to text books about measure on product space and
Fubini’s theorem (Billingsley, 1995).

For a specified relative configuration R, there are only a finite
number, NR, of interfaces between phases i and j. Let
Saðx� xRÞ ¼ 0 be the equation describing interface a ð1 6 a 6 NRÞ
between phases i and j in the relative configuration R. For a spec-
ified point x in space, the point is on interface a in a flow F with
relative configuration R, if and only if the reference point xR of
the flow satisfies Saðx� xRÞ ¼ 0. In this way the position x and sur-
face a in the relative configuration R define a surface S0a consisting
of all the reference points ðx0RsÞ, such that for a reference point xR

on surface S0a, the position x is on interface a of flow
F ¼ fxR;R; tg. The relation among x, interface Sa and surface S0a
is illustrated in Fig. 3.

We now introduce the geometrical center, xðaÞRc , of surface S0a
satisfying

xðaÞRc

Z
Saðx�xRÞ¼0

dSðxRÞ ¼
Z

Saðx�xRÞ¼0
xR dSðxRÞ; ðA:1Þ

where the integration is over surface S0a.
For a function f ðx; xR;R; tÞ, its interface integral can be calcu-

lated as

I ¼
Z

f ðx; xR;R; tÞdij dP

¼
Z

R

XNR

a¼1

Z
Saðx�xRÞ¼0

f ðx; xR;R; tÞPRðxR; tjRÞdSaðxRÞdPðR; tÞ: ðA:2Þ

To calculate integral (A.2) we introduce a variable y ¼ x� xR

and a function U as

Uðy; xR;R; tÞ ¼ f ðxR þ y; xR;R; tÞPRðxR; tjRÞ: ðA:3Þ

The variable y represents the distance from the reference point
xR to the point x within the relative configuration R. In many flows,
the value of U is sensitive to a change in y because this change rep-
resents a displacement of x relative to important features, such as
phase interfaces, in the flow. The second variable, xR, represents
the translation of the configuration, while keeping the relative dis-
tances between x and the important features unchanged. The
change in the function U because of a change in xR is a conse-
quence of the change in the environment that the flow is in. This
change in the function value is often slower than the change
caused by the relative motion between x and the important fea-
tures of the flow, especially when x is in the vicinity of the impor-
tant features, such as interfaces. In the form of U we distinguish
variables y that often causes a rapid change in the function value
from the variable xR that usually causes a slow change in the func-
tion value in a multiphase flow. This distinction is similar to the
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idea of separating physical quantities into the rapidly varying and
slowly varying components as used by Prosperetti and Jones
(1984). Using (A.3) we write (A.2) as

I ¼
Z

R

XNR

a¼1

Z
Saðx�xRÞ¼0

U x� xR; xR;R; tð ÞdSaðxRÞdPðR; tÞ: ðA:4Þ

After changing variables

ra ¼ xðaÞRc � xR and yðaÞc ¼ x� xðaÞRc ; ðA:5Þ

and noting dSaðxRÞ ¼ dSaðraÞ, we can rewrite Eq. (A.4) as

I ¼
Z

R

XNR

a¼1

Z
Sa yðaÞc þrað Þ¼0

U yðaÞc þ ra; x
ðaÞ
Rc � ra;R; t

� �
dSaðraÞdPðR; tÞ:

ðA:6Þ

Applying Lagrange’s mean value theorem to the second variable
of U, one finds that there is a number g satisfying 0 < g < 1, such
that

I ¼
Z

R

XNR

a¼1

Z
Sa yðaÞc þrað Þ¼0

U yðaÞc þ ra; x
ðaÞ
Rc ;R; t

� �
dSaðraÞdPðR; tÞ

�
Z

R

XNR

a¼1

Z
Sa yðaÞc þrað Þ¼0

ra � r2U yðaÞc þ ra; x
ðaÞ
Rc � gra;R; t

��

dSaðraÞdPðR; tÞ; ðA:7Þ

where r2 denotes that the gradient is applied to the second vari-
able of U. Using the second variable change in (A.5), we have
r2U yðaÞc þ ra; x

ðaÞ
Rc � gra;R; t

� �
¼ rxU yðaÞc þ ra; x� yðaÞc � gra;R; t

� �
.

After the exchange of the order of rx and the integrals, we find

I ¼ V þrx � T; ðA:8Þ

where

Vðx;tÞ¼
Z

R

XNR

a¼1

Z
Sa yðaÞc þrað Þ¼0

U yðaÞc þra;x�yðaÞc ;R;t
� �

dSaðraÞdPðR;tÞ;

ðA:9Þ

Tðx; tÞ ¼ �
Z

R

XNR

a¼1

Z
Sa yðaÞc þrað Þ¼0

U yðaÞc þ ra; x� yðaÞc � gra;R; t
� �

� ra dSaðraÞdPðR; tÞ: ðA:10Þ

For small interfaces, jgraj is of the order of Lf . Using a Taylor expan-
sion, we find

Tðx; tÞ ¼ �
Z

R

XNR

a¼1

Z
Sa yðaÞc þrað Þ¼0

U yðaÞc þ ra; x� yðaÞc ;R; t
� �

� ra dSaðraÞdPðR; tÞ þ O VL2
f =L

� �
: ðA:11Þ

From (A.3) and (A.5) we have

Vðx;tÞ¼
Z

R

XNR

a¼1

PR xðaÞRc ;tjR
� �Z

Sa xþra�xðaÞRcð Þ¼0
f xþ ra;x

ðaÞ
Rc ;R;t

� �
dSaðraÞdPðR;tÞ;

ðA:12Þ

and

Tðx; tÞ ¼ �
Z

R

XNR

a¼1

PR xðaÞRc ; tjR
� �Z

Sa xþra�xðaÞ
Rcð Þ¼0

f xþ ra; x
ðaÞ
Rc ;R; t

� �
� ra dSaðraÞdPðR; tÞ þ O L2

f V=L
� �

:

ðA:13Þ
The surface integral over ra in (A.12) and (A.13) are performed
in a fixed configuration with the reference point at xðaÞRc . Further-
more, in this configuration point x is the geometric center of the
surface Saðxþ ra � xðaÞRc Þ ¼ 0 as we now prove. Upon changing the
integration variable from xR to ra using (A.5), we can rewrite
(A.1) as

xðaÞRc

Z
Sa xþra�xðaÞRcð Þ¼0

dSaðraÞ ¼
Z

Sa xþra�xðaÞRcð Þ¼0
xðaÞRc � ra

� �
dSaðraÞ;

ðA:14Þ

orZ
Sa xþra�xðaÞRcð Þ¼0

ra dSaðraÞ ¼ 0: ðA:15Þ

This impliesZ
Sa xþra�xðaÞ

Rcð Þ¼0
ðxþ raÞdSaðraÞ ¼ x

Z
Sa xþra�xðaÞ

Rcð Þ¼0
dSaðraÞ; ðA:16Þ

or x is the geometric center of the interface Sa xþ ra � xðaÞRc

� �
¼ 0 in

the flow with the reference point at xðaÞRc . Conversely, working back-
ward, we can prove if x is the geometric center of Sa; xR is at the geo-
metric center of S0a. The surface integrals in (A.12) and (A.13)
integrate over surfaces with their geometric centers at x. The prob-
ability integral averages over all such surface integrals according to
the probability distribution of the ensemble.

The equations so far listed in this appendix are valid, if we re-
define NR above to be the number of curves defined in the relative
configuration R, and replace all the surface integrals by curve inte-
grals along curves Caðx� xRÞ ¼ 0 ða ¼ 1; � � � ;NRÞ. In this way the
integrals in (A.1) used to define geometric center xðaÞRc also become
curve integrals. If the curves are the edges of phase interfaces, in
the derivation of corresponding relations for the curve integrals,
we can choose that xðaÞRc remains to be the geometric center of the
phase interface.

Corresponding to (A.8), a curve integral,

Ic ¼
Z

R

XNR

a¼1

Z
Caðx�xRÞ¼0

f ðx; xR;R; tÞPRðxR; tjRÞdCaðxRÞdPðR; tÞ;

ðA:17Þ

can be calculated as

Ic ¼ V c þrx � Tc; ðA:18Þ

where

V cðx; tÞ ¼
Z

R

XNR

a¼1

PR xðaÞRc ; tjR
� �

�
Z

Ca xþra�xðaÞRcð Þ¼0
f xþ ra; x

ðaÞ
Rc ;R; t

� �
dCaðraÞdPðR; tÞ;

ðA:19Þ

Tcðx; tÞ ¼ �
Z

R

XNR

a¼1

PR xðaÞRc ; tjR
� �Z

Ca xþra�xðaÞRcð Þ¼0
f xþ ra; x

ðaÞ
Rc ;R; t

� �

� radCaðraÞdPðR; tÞ þ O L2
f V c=L

� �
; ðA:20Þ

and xðaÞRc is the reference point of the configuration such that in the
configuration, position x is either the geometric center of the curve
or the geometric center of the surface bounded by the curve. Either
choice for this center is permitted as long as the centers used to cal-
culate V c and Tc are the same. For simplicity, in the main text we
use the geometric center of the interface and not the geometric cen-
ter of the curve.
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The number density nsðx; tÞ of interfaces at point x is defined as
number of interfaces per unit volume with the geometric centers of
the interfaces at x. As proved before, x is the geometric center of
interface a if and only if xR is at xðaÞRc ; therefore the number density
of interfaces at point x can be calculated as

nsðx; tÞ ¼
Z XNR

a¼1

d xðaÞRc � xR

� �
PRðxR; tjRÞd3xR dPðR; tÞ

¼
Z

R

XNR

a¼1

PR xðaÞRc ; tjR
� �

dPðR; tÞ: ðA:21Þ

For a quantity gs
aðx; t;RÞ pertaining to an interface with the geo-

metric center at x, its average gs can be defined as

�gsðx; tÞ ¼ 1
ns

Z XNR

a¼1

d xðaÞRc � xR

� �
gs

aðx; t;RÞPRðxR; tjRÞd3xR dPðR; tÞ

¼ 1
ns

Z
R

XNR

a¼1

gs
aðx; t;RÞPR xðaÞRc ; tjR

� �
dPðR; tÞ: ðA:22Þ

By setting gs to be the corresponding surface integrals in (A.12)
and (A.13), we can write

Vðx; tÞ ¼ nsðx; tÞ
Z

Sa

f dSa; ðA:23Þ

and

Tðx; tÞ ¼ �nsðx; tÞ
Z

Sa

f � ra dSa þ O L2
f V=L

� �
; ðA:24Þ

where Sa is the interface with its geometric center at x.
Similarly, regarding the curve integrals in (A.19) and (A.20) as

quantities pertaining to one of the surfaces bounded by the curve,
we can write

V cðx; tÞ ¼ nsðx; tÞ
Z

Ca

f dSa; ðA:25Þ

and

Tcðx; tÞ ¼ �nsðx; tÞ
Z

Ca

f � ra dSa þ O L2
f V c=L

� �
: ðA:26Þ

The tools developed in this appendix are extensions of the small
particle approximation used by Zhang and Prosperetti (1994,
1997). In the small particle approximation, the surface Sa has to
be closed as phase interfaces are in disperse two phase flows. This
restriction is now removed and the surface Sa can be open. In this
way the relations (A.8) and (A.18) can be used for multiphase flows
in a porous medium, in which an interface between two phases is
not necessarily closed and often ends on a surface of a third phase.

Appendix B. Extension to multiphase

In the main text we have used the ensemble phase averaging
approach to derive the averaged equations for two-phase flows
in a porous solid. The approach is not limited to two-phase flows
and can be extended to multiphase flows in a porous solid. In this
appendix we explain additions needed for such extension.

In the case of multiphase flows, a contact line on the surface of a
phase may be shared by more than one interface as shown in Fig. 2.
To account for this possibility, the force balance on a surface of
phase i can be written as

ri � rCi þ
X
j–i

rj � ðrCjÞi þ
X
j–i

sijdij þ
X
½k;m�

XNkm

a¼1

CðaÞkmtðaÞkmdc ¼ 0; ðB:1Þ

where dij is the d-function on interface between phases i and j,
such that ðrCiÞj ¼ nidij, with ni being the normal on the interface
toward phase i. In this extension to (9) and (10), the subscript
½k;m� denotes the summation over all possible phase pairs not
involving phase i ðk–i and m–iÞ in the system, Nkm is the total
number of interfaces between phases k and m at the time in
the flow, and dc ¼ didm ¼ didk is the d-function on the contact line.
Without external forces on the interface, the surface traction
sij ¼ Cijjijni þrtCij, where Cij ¼ Cji is the surface tension coeffi-
cient on the interface between phases i and j, jij ¼ �jji is the
curvature of the interface, and rt ¼ r� niðni � rÞ is the gradient
operator tangent to the interface. The curvature jij is positive if
the interface is convex for phase i.

As we did to derive (11) and (12), we use (B.1) and average over
flows in which x is not on the contact lines at time t, to obtain

F ijðx; tÞ þ F jiðx; tÞ ¼ ðhrii � hrjiÞ �
Z
ðrCiÞj dPþ

Z
sijdij dP; ðB:2Þ

where F ij is defined the same as (7).
Since the contact lines have negligible mass, the forces on a con-

tact line balance each other and produce zero net force. These
forces include the forces in the last term of left-hand side of
(B.1), the tangential component Cijtijdc contained in sijdij, and the
concentrated surface traction force rs � ðrCsÞi from the solid phase
on the contact line if the contact line is on the surface of the solid.
Substituting (B.1) into (5), using the force balance on the contact
line and (B.2), for fluid phase i we find a generalization of (8) as

f i ¼
X
j–i

F ij; ðB:3Þ

where summation index j runs over all phases in the system, includ-
ing the solid phase.

Similarly, by substituting (B.1) into (5) and using (B.2), for the
solid phase, we find that (6) can be extended to give

f s ¼
X

i

Fsi þ
X
½k;m�

Z XNkm

a¼1

CðaÞkmtðaÞkmdc dP: ðB:4Þ

The last term represents the surface tension force applied by phase
interfaces on the contact lines on the solid surface. This term is not
usually zero because the surface tension forces on a contact line on
the solid surface do not usually balance each other, and a response
from the solid phase is needed as shown in Fig. 1 and explained in
Section 2.1.

By noting ðrCiÞj ¼ �ðrCjÞi and relation (13), we have the fol-
lowing identity:
X
½i;j�
ðhrii � hrjiÞ

Z
ðrCiÞj dP ¼

X
i

hrii
X

j

Z
ðrCiÞj dP ¼

X
i

hriirhi:

ðB:5Þ

From (B.2)–(B.5) we have

X
i

f iðx; tÞ ¼
X

i

hriirhi þ
X
½i;j�

Z
sijdij dPþ

X
½i;j�

Z XNij

a¼1

CðaÞij tðaÞij dc dP;

ðB:6Þ

where summation with subscript i is over all phases, summation
with subscript ½i; j� is over all phase pairs; and the last term, from
(B.4), represents the effect of contact lines on the solid surface.
Since the surface tension on a solid surface is not well defined, as
before, we treat the solid response as a stress in the solid phase
and regard CðaÞsj ¼ CðaÞjs ¼ 0, ssj ¼ sjs ¼ 0 in (B.1), (B.2) and (B.6). The
summation with subscript ½i; j� can then be regarded over fluid
phase pairs only.

For a contact line not on a solid surface, we have

X
½i;j�

XNij

a¼1

CðaÞij tðaÞij ¼ 0; ðB:7Þ
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because of the force balance on the contact line. Using (B.7), we find
that (B.6) is still correct if we extend the summation in the last term
of (B.6) to include all contact lines in the flow. In other words, the
last term in (B.6) can be regarded as an integral over flows having
edges of fluid interfaces touching x at time t. By setting f ¼ sij in
(A.2) and then using (A.8), (A.12) and (A.13) we haveZ

sijdij dP ¼ FðijÞs þr � T ðijÞs ; ðB:8Þ

where

FðijÞs ¼
Z

R

XNRij

a¼1

PR xðaÞRc ; tjR
� �Z

Sa

sij dSa dPðR; tÞ; ðB:9Þ

and

T ðijÞs ¼ �
Z

R

XNRij

a¼1

PR xðaÞRc ; tjR
� �Z

Sa

sij � ra dSa dPðR; tÞ þ O L2
f FðijÞs =L

� �
;

ðB:10Þ
with NRij being the total number of fluid interfaces between phases i
and j in the relative configuration R. Since the last term in (B.6) can
be regarded as a summation over all contact lines in a flow, the en-
tire edge oSa of any interface is included in the summation, includ-
ing the parts of oSa not on the surface of the solid phase but on a
surface of a fluid phase. After setting f ¼ CðaÞij tðaÞij in (A.17) and then
using (A.18)–(A.20), we have
Z XNij

a¼1

CðaÞij tðaÞij dc dP ¼ FðijÞ‘ þr � T ðijÞ‘ ; ðB:11Þ

where

FðijÞ‘ ðx; tÞ ¼
Z

R

XNRij

a¼1

PR xðaÞRc ; tjR
� �Z

oSa

CðaÞij tðaÞij dCa dPðR; tÞ; ðB:12Þ

T ðijÞ‘ ðx; tÞ ¼ �
Z

R

XNRij

a¼1

PR xðaÞRc ; tjR
� �Z

oSa

CðaÞij tðaÞij

� radCa dPðR; tÞ þ O L2
f FðijÞ‘ =L

� �
: ðB:13Þ

Using (37) we find FðijÞs þ FðijÞ‘ ¼ 0, and (B.6) becomesX
i

f iðx; tÞ ¼
X

i

hriirhi þr �
X
½i;j�

T ðijÞs þ T ðijÞ‘
� �

: ðB:14Þ

With this relation, the mixture momentum equation can be
written in a general conservative form similar to (38),

o

ot
ðqMhuMiÞ þ r � ðqMhuMihuMiÞ

¼ r � rM þr �
X
½i;j�

T ðijÞs þ T ðijÞ‘
� �

þr �
X

i

hir
Re
i

� �
� qiðhuii � huMiÞðhuii � huMiÞ

� �
þ qMg: ðB:15Þ
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